

# SCREENING OF RICE GENOTYPE FOR THEIR STORABILITY AT GERMINATION STAGE

# A. Kowsalya<sup>1\*</sup> and V. Rajendra Prasath<sup>2</sup>

<sup>1\*</sup>Department of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Annamalai University, Annamalai Nagar, (Tamil Nadu), India.

<sup>2</sup>Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalai Nagar, (Tamil Nadu), India.

## Abstract

Studies were carried out at seed technology unit of department of plant breeding and genetics, Pandit Jawaharlal Nehru College of Agriculture and Research Institute, Karaikal, Puducherry (UT) to investigate (i) Screening of rice genotypes at germination stage for their tolerance to ageing/storage potential using accelerated ageing test by employing various seed quality parameters. Seeds of 34 genotypes subjected to accelerated ageing (43±2°C temperature and 95% RH) for five days to screen the rice genotypes for seed storability shown significant variation in ability to germinate and produce vigorous seedlings. The results showed significant decline in seed germination and vigour quality parameters upon accelerated ageing. The seed quality parameters showed significant differences due to genotypes and ageing their interaction. Seeds of P# 353-225-326 completely lost germination after five days of accelerated ageing which represent a very poor storer. P# 155-49-138 recorded highest value of seed vigour after ageing, followed by P# 353-225-325, TKM 9 (local variety) and P# 482-30-29. In general, rice genotypes P# 155-49-138, TKM 9 (local variety), P# 482-30-29 and P# 353-225-325 showed greater storage potential/storability while P# 353-225-326, P# 155-49-228 registered lower storage potentional/storability in terms of seed germination and seedling vigour. The result showed significant decline in seed germination and seedling vigour in all genotypes/varieties upon salt stress and accelerated ageing but the degree of reduction was varied significantly among varieties/ genotypes. This results could helpful in identification of tolerant varieties which can be studied further.

Key words: Rice genotypes, Accelerated ageing, Germination and Quality parameters.

### Introduction

Rice (*Oryza* spp.) is an important cereal crop and is mainly used for human consumption. A 100 g of rice provides 345.0 k cal, 78.2 g of carbohydrates and 6.8 g of protein (Gopalan *et al.*, 2007) inclusive of considerable amount of recommended Zinc and Niacin. Rice protein is biologically richest as it digestibility is very high (88%). Rice provides almost 50 - 80% of daily calorie intake amongst the poor class of the society. It's a staple food and cash crop for more than three billion people in the world (Ma *et al.*, 2007). Asian farmers constitute about 92% of the world's total rice producing group (Mitin, 2009). In Asia 90% of rice is produced by small farmers who are solely dependent on rice for their livelihood and food security (ANU, 2006).

Accelerated ageing test is a quick test based on increased seed deterioration under hot and humid condition of storage. It has been used to estimate seed vigour and deterioration during storage (Delouche and Baskin, 1973; McDonald, 1999; Modaressi and Van damme, 2003) and has good correlation to field emergence and storage potential of the seed. The degree of tolerance for accelerated ageing conditions has been related to the survivability of the seed in storage (Delouche and Baskin, 1973). Accelerated ageing conditions could help breeders to determination differences in a variety's potential to resist seed deterioration during storage. Siddique et al., (1988) used accelerated ageing test to screen different rice varieties tolerance to ageing and developed a rapid screening test that can evaluate rice seeds tolerance to adverse environmental conditions and the results indicated that rice varieties differ significantly in their ability to maintain seed viability through artificial ageing. Therefore, the present investigation was attempted for the objective of screening of rice genotypes at germination stage for their tolerance to ageing/potential using accelerated ageing

<sup>\*</sup>Author for correspondence : E-mail : kowsalya0395@gmail.com

test.

# **Materials and Methods**

Thirty four rice genotypes in which 30 genotypes (V1 to 30) derived from Recombinant Inbreed Lines (RIL) of ADT 45/FL478 Cross and developed through single seed descent method of selection and four varieties (V31 to V34) were collected from the Department of Plant Breeding and Genetics, PAJANCOA&RI, Karaikal and used in germination tests to evaluate their storage potential / storability using accelerated ageing test. The details of the genotypes used for the experiment are given in table 1.

Seed samples of each genotype were packed in

muslin cloth and kept in Accelerated ageing chamber and exposed the seeds to  $43\pm2$ °C temperature and 100% RH for 5 days using Hot air oven, then seeds were dried under shade overnight and germination test was conducted along with Non-aged seeds (Delouche and Baskin, 1973).

**Germination test:** Thirty four (34) seeds of each genotype were allowed to germinate on filter paper/germination paper in 10 cm diameter Petri dish. The Petri dishes were kept under laboratory conditions in a Randomized Complete Block Design (Factorial) with three replications. Filter papers were kept under moist with equal volume of normal water for all Petri dishes during the experiment at room temperature (25±2) and

| S    | Geno     | Lineno /                  | Description                                           |  |  |  |
|------|----------|---------------------------|-------------------------------------------------------|--|--|--|
| No   | types    | variety name              | Description                                           |  |  |  |
| 110. | types    | $P_{\mu}^{\mu}(26, 2, 7)$ | Decembinant Inhred Lines (DIL) of ADT 45/EL 478 grass |  |  |  |
| 1.   | VI<br>V2 | P#030-3-7                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 2.   | V2       | P#15-8-0                  | Recombinant Inbred Lines (RIL) of ADT 45/FL4/8 cross  |  |  |  |
| 3.   | V3       | P#030-3-0                 | Recombinant Inbred Lines (RIL) of ADT 45/FL4/8 cross  |  |  |  |
| 4.   | V4       | P#130-5-11                | Recombinant Inbred Lines (RIL) of ADT 45/FL4/8 cross  |  |  |  |
| 5.   | V5       | P#869-4-19                | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 6.   | V6       | P#130-5-10                | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 7.   | V7       | P#130-5-12                | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 8.   | V8       | P#429-5-2-1               | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 9.   | V9       | P#542-6-1                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 10.  | V10      | P#869-4-15                | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 11.  | V11      | P#93-7-4                  | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 12.  | V12      | P#605-1-1                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 13.  | V13      | P#15-8-2                  | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 14.  | V14      | P#679-7-1                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 15.  | V15      | P#605-4-9                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 16.  | V16      | P#224-4-8                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 17.  | V17      | P#605-6-3                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 18.  | V18      | P#15-8-7                  | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 19.  | V19      | P#224-4-3                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 20.  | V20      | P#605-6-2                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 21.  | V21      | P#605-5-2                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 22.  | V22      | P#636-3-4                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 23.  | V23      | P#281-4-9                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 24.  | V24      | P#679-7-5                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 25.  | V25      | P#281-4-8                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 26.  | V26      | P#605-5-1                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 27.  | V27      | P#15-1-7                  | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 28.  | V28      | P#99-5-1-1                | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 29.  | V29      | P#839-5-5                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 30.  | V30      | P#839-1-5                 | Recombinant Inbred Lines (RIL) of ADT 45/FL478 cross  |  |  |  |
| 31.  | V31      | TKM 9                     | Local variety                                         |  |  |  |
| 32.  | V32      | ADT 37                    | Local variety                                         |  |  |  |
| 33.  | V33      | ADT 43                    | Local variety                                         |  |  |  |
| 34.  | V34      | ADT 45                    | Local variety                                         |  |  |  |

 Table 1: Details of rice genotypes used for the Experiment.

12 hours of light. Petri dishes were examined on daily basis for 14 days after sowing and seeds were considered germinated when the radicle was at least 2mm in length. Germination characters were recorded on 14<sup>th</sup> day after sowing.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Germination      |                   |       | Perce- Speed of |                   |      | Perce- |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|-------------------|-------|-----------------|-------------------|------|--------|--------|
| types         Initial         Aged<br>(A)         Mean<br>(A)         Redu-<br>ction         Initial<br>(A)         Aged<br>(A)         Mean<br>(A)         Cdu-<br>ction           V1         80         35         57.5         56.2         46.3         17.5         31.9         62.2           V2         95         85         90         10.5         43.3         11.2         42.25         4.8           V3         90         00         90         00         45.3         0         22.65         100           V4         90         90         00         0         47.5         47.5         47.5         0           V5         100         100         10         0         47.5         47.5         47.5         0           V6         100         90         95         10         47.5         47.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         32.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         12.2           V11         95         75.85         21.1         48.5 <td< th=""><th>Geno</th><th colspan="3">per cent</th><th>ntage</th><th colspan="3">germination</th><th>ntage</th></td<> | Geno  | per cent         |                   |       | ntage           | germination       |      |        | ntage  |
| (A <sub>0</sub> )         (A <sub>1</sub> )         ction         (A <sub>0</sub> )         (A1)         ction           V1         80         35         57.5         56.2         46.3         17.5         31.9         62.2           V2         95         85         90         10.5         43.3         41.2         42.25         4.8           V3         90         0         45.3         100         22.65         100           V4         90         90         90         0         40.5         38.8         39.65         4.1           V5         100         100         100         0         47.5         47.5         47.5         0           V6         100         90         95         10         47.5         45.3         46.25         5.2           V7         90         60         75         83.3         45.3         7.5         32.9         83.4           V9         90         75         82.5         116.6         44.5         32.2         39.85         20.8           V10         95         95         95         0         47.4         46.2         46.6         1.7           V11         90                                                                                                                               | types | Initial          | Aged              | Mean  | Redu-           | Initial           | Aged | Mean   | redu-  |
| VI         80         35         57.5         562         46.3         17.5         31.9         62.2           V2         95         85         90         10.5         43.3         41.2         42.25         4.8           V3         90         0         455         100         45.3         0         22.65         100           V4         90         90         90         0         40.5         38.8         39.65         4.1           V5         100         100         100         0         47.5         47.5         0           V6         100         90         95         10         47.5         47.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         0         48.1         47.5         47.8         12           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         77.5         27.7         45.2         32.5         38.9         28.4                                                                                                                                                                   |       | $(\mathbf{A}_0)$ | (A <sub>1</sub> ) |       | ction           | (A <sub>0</sub> ) | (A1) |        | ction  |
| V2         95         85         90         10.5         43.3         41.2         42.25         4.8           V3         90         0         45         100         45.3         0         22.65         100           V4         90         90         90         0         40.5         38.8         39.65         4.1           V5         100         100         0         47.5         47.5         47.5         0           V6         100         90         95         10         47.5         45         46.25         52           V7         90         60         75         33.3         43.5         35         39.25         19.5           V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V10         95         95         0         48.1         47.5         47.8         12           V11         95         75         85         21         48.5         32.5         30.2         32.9           V12         100         65         77.5         27.7         45.2         32.5         37.5         28                                                                                                                                                                            | Vl    | 80               | 35                | 57.5  | 56.2            | 46.3              | 17.5 | 31.9   | 62.2   |
| V3         90         0         45         100         45.3         0         22.65         100           V4         90         90         90         0         40.5         38.8         39.65         4.1           V5         100         100         100         0         47.5         47.5         47.5         0           V6         100         90         95         10         47.5         45         46.25         5.2           V7         90         60         75         33.3         43.5         35         39.25         19.5           V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V9         90         75         85.5         16.6         44.5         35.2         39.85         20.8           V11         95         75         85         21         48.5         32.5         40.2         32.9         23.4           V12         100         65         77.5         27.7         45.2         32.5         38.8         24.6         1.7           V14         90         65         77.5         27.7         45                                                                                                                                                        | V2    | 95               | 85                | 90    | 10.5            | 43.3              | 41.2 | 42.25  | 4.8    |
| V4         90         90         90         0         40.5         38.8         39.65         4.1           V5         100         100         100         0         47.5         47.5         47.5         0           V6         100         90         95         10         47.5         45         46.25         5.2           V7         90         60         75         33.3         43.5         35         39.25         19.5           V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         12           V11         95         75         85         21         48.5         32.5         38.9         28.4           V12         100         65         77.5         27.7         45.2         32.5         37.5         28           V14         90         65         77.5         37.7         45.2         42.5         43                                                                                                                                                        | V3    | 90               | 0                 | 45    | 100             | 45.3              | 0    | 22.65  | 100    |
| V5         100         100         90         95         10         47.5         47.5         47.5         52           V7         90         60         75         33.3         43.5         35         39.25         19.5           V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         1.2           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         37.5         28           V14         90         65         77.5         27.7         45.2         32.5         36.6         38.2           V17         90         85         87.5         5.5         45.3         <                                                                                                                                                    | V4    | 90               | 90                | 90    | 0               | 40.5              | 38.8 | 39.65  | 4.1    |
| V6         100         90         95         10         47.5         45         46.25         5.2           V7         90         60         75         33.3         43.5         35         39.25         19.5           V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         1.2           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         36.6         38.2           V17         90         85         87.5         5.5         45.3         42.5                                                                                                                                                          | V5    | 100              | 100               | 100   | 0               | 47.5              | 47.5 | 47.5   | 0      |
| V7         90         60         75         33.3         43.5         35         39.25         19.5           V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         1.2           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         452         32.5         37.5         28           V16         90         55         72.5         38.8         44.5         37.5         38         32.9         6.1           V18         65         30         47.5         53.8         42.1                                                                                                                                                         | V6    | 100              | 90                | 95    | 10              | 47.5              | 45   | 46.25  | 5.2    |
| V8         90         15         52.5         83.3         45.3         7.5         32.9         83.4           V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         1.2           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         3.3         23.95         92.6           V20         95         90         92.5         52         49.2         30.3                                                                                                                                                           | V7    | 90               | 60                | 75    | 33.3            | 43.5              | 35   | 39.25  | 19.5   |
| V9         90         75         82.5         16.6         44.5         35.2         39.85         20.8           V10         95         95         95         0         48.1         47.5         47.8         1.2           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         3.3         23.95         92.6           V17         90         85         87.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5                                                                                                                                                         | V8    | 90               | 15                | 52.5  | 83.3            | 45.3              | 7.5  | 32.9   | 83.4   |
| V10         95         95         95         0         48.1         47.5         47.8         1.2           V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         27.5         36         38.2           V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V20         95         90         92.5         5.2         49.2         30.3                                                                                                                                                             | V9    | 90               | 75                | 82.5  | 16.6            | 44.5              | 35.2 | 39.85  | 20.8   |
| V11         95         75         85         21         48.5         32.5         40.2         32.9           V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         27.5         36         38.2           V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3                                                                                                                                                         | V10   | 95               | 95                | 95    | 0               | 48.1              | 47.5 | 47.8   | 1.2    |
| V12         100         65         82.5         35         49         37.6         43.3         23.2           V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         27.5         36         38.2           V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         44.2         37.5         41.85 <td>V11</td> <td>95</td> <td>75</td> <td>85</td> <td>21</td> <td>48.5</td> <td>32.5</td> <td>40.2</td> <td>32.9</td>                              | V11   | 95               | 75                | 85    | 21              | 48.5              | 32.5 | 40.2   | 32.9   |
| V13         90         30         60         66.6         45.4         32.5         38.95         28.4           V14         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         27.5         36         38.2           V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         44.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5 <td>V12</td> <td>100</td> <td>65</td> <td>82.5</td> <td>35</td> <td>49</td> <td>37.6</td> <td>43.3</td> <td>23.2</td>                             | V12   | 100              | 65                | 82.5  | 35              | 49                | 37.6 | 43.3   | 23.2   |
| VI4         90         65         77.5         27.7         45.2         32.5         37.5         28           V15         95         95         95         0         47         46.2         46.6         1.7           V16         90         55         72.5         38.8         44.5         27.5         36         38.2           V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         22.2         46.5         35                                                                                                                                                     | V13   | 90               | 30                | 60    | 66.6            | 45.4              | 32.5 | 38.95  | 28.4   |
| V1595959504746.246.61.7V16905572.538.844.527.53638.2V17908587.55.545.342.543.96.1V18653047.553.842.11528.5564.3V1990105088.844.63.323.9592.6V20959092.55.249.230.339.7539V21907582.516.646.237.541.8518.8V22757072.56.644.237.540.8515.1V2395708026.349.241.545.3515.6V24909090047.34525.654.8V2590708022.246.53540.7524.7V26904567.55047.23038.636.8V27955072.547.348.62536.848.4V2895658031.549.332.550.934V29806572.518.74432.538.2526.1V309575852149.537.543.524.2V31100809020492838.542.8V3295 <t< td=""><td>V14</td><td>90</td><td>65</td><td>77.5</td><td>27.7</td><td>45.2</td><td>32.5</td><td>37.5</td><td>28</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V14   | 90               | 65                | 77.5  | 27.7            | 45.2              | 32.5 | 37.5   | 28     |
| V16         90         55         72.5         38.8         44.5         27.5         36         38.2           V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35 <td>V15</td> <td>95</td> <td>95</td> <td>95</td> <td>0</td> <td>47</td> <td>46.2</td> <td>46.6</td> <td>1.7</td>                                  | V15   | 95               | 95                | 95    | 0               | 47                | 46.2 | 46.6   | 1.7    |
| V17         90         85         87.5         5.5         45.3         42.5         43.9         6.1           V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30                                                                                                                                                    | V16   | 90               | 55                | 72.5  | 38.8            | 44.5              | 27.5 | 36     | 38.2   |
| V18         65         30         47.5         53.8         42.1         15         28.55         64.3           V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         18.7         44         32.5                                                                                                                                                    | V17   | 90               | 85                | 87.5  | 5.5             | 45.3              | 42.5 | 43.9   | 6.1    |
| V19         90         10         50         88.8         44.6         3.3         23.95         92.6           V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5                                                                                                                                                     | V18   | 65               | 30                | 47.5  | 53.8            | 42.1              | 15   | 28.55  | 64.3   |
| V20         95         90         92.5         5.2         49.2         30.3         39.75         39           V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5                                                                                                                                                       | V19   | 90               | 10                | 50    | 88.8            | 44.6              | 3.3  | 23.95  | 92.6   |
| V21         90         75         82.5         16.6         46.2         37.5         41.85         18.8           V22         75         70         72.5         6.6         44.2         37.5         40.85         15.1           V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         15.7         49.1         27                                                                                                                                                        | V20   | 95               | 90                | 92.5  | 5.2             | 49.2              | 30.3 | 39.75  | 39     |
| V22       75       70       72.5       6.6       44.2       37.5       40.85       15.1         V23       95       70       80       26.3       49.2       41.5       45.35       15.6         V24       90       90       90       0       47.3       45       25.65       4.8         V25       90       70       80       22.2       46.5       35       40.75       24.7         V26       90       45       67.5       50       47.2       30       38.6       36.8         V27       95       50       72.5       47.3       48.6       25       36.8       48.4         V28       95       65       80       31.5       49.3       32.5       50.9       34         V29       80       65       72.5       18.7       44       32.5       38.25       26.1         V30       95       75       85       21       49.5       37.5       43.5       24.2         V31       100       80       90       20       49       28       38.5       42.8         V32       95       80       87.5       15.7       49.1                                                                                                                                                                                                                                                         | V21   | 90               | 75                | 82.5  | 16.6            | 46.2              | 37.5 | 41.85  | 18.8   |
| V23         95         70         80         26.3         49.2         41.5         45.35         15.6           V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         3                                                                                                                                                        | V22   | 75               | 70                | 72.5  | 6.6             | 44.2              | 37.5 | 40.85  | 15.1   |
| V24         90         90         90         0         47.3         45         25.65         4.8           V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38                                                                                                                                                        | V23   | 95               | 70                | 80    | 26.3            | 49.2              | 41.5 | 45.35  | 15.6   |
| V25         90         70         80         22.2         46.5         35         40.75         24.7           V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26 <t< td=""><td>V24</td><td>90</td><td>90</td><td>90</td><td>0</td><td>47.3</td><td>45</td><td>25.65</td><td>4.8</td></t<>                                      | V24   | 90               | 90                | 90    | 0               | 47.3              | 45   | 25.65  | 4.8    |
| V26         90         45         67.5         50         47.2         30         38.6         36.8           V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2                                                                                                                                                      | V25   | 90               | 70                | 80    | 22.2            | 46.5              | 35   | 40.75  | 24.7   |
| V27         95         50         72.5         47.3         48.6         25         36.8         48.4           V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V             0.06*** <t< td=""><td>V26</td><td>90</td><td>45</td><td>67.5</td><td>50</td><td>47.2</td><td>30</td><td>38.6</td><td>36.8</td></t<>                                                                             | V26   | 90               | 45                | 67.5  | 50              | 47.2              | 30   | 38.6   | 36.8   |
| V28         95         65         80         31.5         49.3         32.5         50.9         34           V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V             (0.05)           A           A          0.06***           V                                                                                                                                                                                                                                                                     | V27   | 95               | 50                | 72.5  | 47.3            | 48.6              | 25   | 36.8   | 48.4   |
| V29         80         65         72.5         18.7         44         32.5         38.25         26.1           V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V             (0.05)           A           A          0.06***           V             0.06***                                                                                                                                                                                                                                                                                                                                                               | V28   | 95               | 65                | 80    | 31.5            | 49.3              | 32.5 | 50.9   | 34     |
| V30         95         75         85         21         49.5         37.5         43.5         24.2           V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V           V          CD         (0.05)           A           A         0.06**         0.06**           VxA           VxA         0.36**         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                     | V29   | 80               | 65                | 72.5  | 18.7            | 44                | 32.5 | 38.25  | 26.1   |
| V31         100         80         90         20         49         28         38.5         42.8           V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V            V          CD           A           A         0.06**         0.06**           V            A         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V30   | 95               | 75                | 85    | 21              | 49.5              | 37.5 | 43.5   | 24.2   |
| V32         95         80         87.5         15.7         49.1         27         38.05         45           V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V         V         V         CD         (0.05)         (0.05)           A         A         0.06**         0.06**         0.06**           VxA         XA         VxA         0.36**         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V31   | 100              | 80                | 90    | 20              | 49                | 28   | 38.5   | 42.8   |
| V33         95         80         87.5         15.7         49.2         46.5         47.85         5.1           V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V         V         V         CD         (0.05)           A         A         A         0.06**           VxA         VxA         VxA         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V32   | 95               | 80                | 87.5  | 15.7            | 49.1              | 27   | 38.05  | 45     |
| V34         95         60         77.5         36.8         50         26         38         48           MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V         V         V         CD         (0.05)           A         A         0.06**         0.06**           VxA         VxA         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V33   | 95               | 80                | 87.5  | 15.7            | 49.2              | 46.5 | 47.85  | 5.1    |
| MEAN         91.17         65.29         78.16         28.84         46.52         32.2         39.2         30.73           V         V         V         CD         (0.05)         (0.05)           A         A         A         0.06**         0.06**           VxA         VxA         0.36**         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V34   | 95               | 60                | 77.5  | 36.8            | 50                | 26   | 38     | 48     |
| V         V         CD           A         (0.05)         (0.05)           A         A         0.06**           VxA         VxA         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEAN  | 91.17            | 65.29             | 78.16 | 28.84           | 46.52             | 32.2 | 39.2   | 30.73  |
| A         (0.05)           A         A         0.06**           VxA         VxA         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     |                  |                   |       |                 | V                 |      |        | CD     |
| A         A         0.06**           VxA         VxA         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                  |                   |       |                 |                   |      |        | (0.05) |
| VxA         0.06**           VxA         0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α     |                  |                   |       |                 | А                 |      |        | 0.06** |
| VxA VxA 0.36**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                  |                   |       |                 |                   |      |        | 0.06** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VxA   |                  |                   |       |                 | VxA               |      |        | 0.36** |

**Table 2:** Effect of accelerated ageing on germination percentage and speed of germination in rice varieties/genotypes.

a) Germination percentage (Ruan *et al.*, 2002): Total germination percentage (%) was computed as Germination (%) = Number of germinated seeds / total number of seeds tested x 100.

b) Speed of germination (Maguire, 1962): Germination was conducted daily up to the final count day *i.e* 14 day. Emergence of radical with 2 mm was taken as criteria for germination was calculated by using the formula and expressed as absolute number: Speed of germination =  $X_1/Y_1 + X_2 - X_1/Y_2 + X_n - (X_n-1)/Y_n$ .

c) Total seedling length (Yokoi *et al.*, 2002): Seedling length was recorded on  $14^{th}$  day after the seeds were placed for germination. It is the measure of the total of root and shoot of the rice seedling, means values were expressed in cm. Total length = Shoot length + root length.

d) Seedling Fresh Weight: 10 normal seedlings in each replication were taken on random at 14 days after sowing and fresh weight was measured using electronic weighing balance and the mean values were expressed in mg.

e) Seedling fresh weight reduction: Seedling fresh weight reduction= Plant fresh weight at control – plant fresh weight at salt stress/ Fresh weight at control x 100.

**f)** Seedling Dry Matter Production: Ten normal seedlings obtained from the standard germination test were dried in a hot air oven at 85°C for 48 hrs cooled in a desiccators weighed and expressed as mg/seedlings.

**g)** Seedling dry weight reduction: Seedling dry weight reduction= Plant dry weight at control – plant dry weight at salt stress/ Dry weight at control x 100.

h) Vigour Index (Abdul – Baki and Anderson, 1970): Vigour Index = Germination% X Total Seedling Length (cm).

# **Results and Discussion**

Screening of rice genotypes for their tolerance to storability using accelerated ageing test:

Seeds of 34 genotypes undergone accelerated ageing for 5 days shown significant variation in ability to germinate and produce vigorous seedlings.

#### Germination percentage:

Germination percentage showed significant differences due to genotypes and ageing and their

interaction. A significant decline in seed germination of all the genotypes upon ageing was ranged from 0 to 100 per cent. Seeds of V 3 completely lost germination after 5 days of accelerated ageing while V19 and V8 recorded 89 and 83 per cent reduction, respectively. Whereas, no reduction was observed in V4, V5, V10, V15 and V24

 Table 3: Effect of accelerated ageing on Total seedling length (cm) and Dry matter production (mg/seedlings) in rice varieties/ genotypes.

|       | Germination      |                   |          | Perce- | Speed of          |      |          | Perce- |
|-------|------------------|-------------------|----------|--------|-------------------|------|----------|--------|
| Geno  | eno per ce       |                   | nt ntage |        | germination       |      | ntage    |        |
| types | Initial          | Aged              | Mean     | Redu-  | Initial           | Aged | Mean     | redu-  |
|       | $(\mathbf{A}_0)$ | (A <sub>1</sub> ) |          | ction  | (A <sub>0</sub> ) | (A1) |          | ction  |
| Vl    | 14.9             | 13.1              | 14       | 12.0   | 157               | 56   | 106.5    | 64.3   |
| V2    | 12.2             | 11.8              | 12       | 3.2    | 135               | 114  | 124.5    | 15.5   |
| V3    | 10.2             | 0                 | 5.1      | 100    | 158               | 0    | 79       | 100    |
| V4    | 15.3             | 6.6               | 10.95    | 56.8   | 84                | 9    | 46.5     | 89.2   |
| V5    | 13.7             | 9.9               | 11.8     | 27.7   | 166               | 78   | 122      | 53.0   |
| V6    | 13.3             | 8.8               | 11.05    | 33.8   | 178               | 73   | 125.5    | 58.9   |
| V7    | 11.9             | 10.8              | 11.35    | 9.2    | 185               | 87   | 136      | 52.9   |
| V8    | 11.7             | 7.3               | 9.5      | 37.6   | 158               | 56   | 107      | 64.5   |
| V9    | 10.2             | 10.0              | 10.1     | 1.9    | 63                | 48   | 55.5     | 23.8   |
| V10   | 11.0             | 7.6               | 9.3      | 30.9   | 171               | 132  | 151.5    | 22.8   |
| V11   | 13.4             | 11.9              | 12.65    | 11.1   | 167               | 148  | 157.5    | 11.3   |
| V12   | 13.8             | 9.2               | 11.5     | 33.3   | 131               | 94   | 112.5    | 28.2   |
| V13   | 12.4             | 11.4              | 11.9     | 3.4    | 124               | 32   | 78       | 74.1   |
| V14   | 11.5             | 11.1              | 11.3     | 4.5    | 151               | 142  | 146.5    | 5.9    |
| V15   | 11.1             | 10.6              | 10.85    | 4.5    | 127               | 50   | 88.5     | 60.6   |
| V16   | 12.6             | 11.9              | 12.25    | 5.5    | 156               | 141  | 148.5    | 9.6    |
| V17   | 12.3             | 10.0              | 11.15    | 18.6   | 134               | 122  | 128      | 8.9    |
| V18   | 11.7             | 8.4               | 10.05    | 28.2   | 151               | 82   | 116.5    | 45.6   |
| V19   | 14.8             | 6.5               | 10.65    | 56.0   | 168               | 34   | 101      | 79.7   |
| V20   | 11.2             | 9.1               | 10.15    | 18.75  | 127               | 119  | 123      | 6.2    |
| V21   | 11.6             | 8.0               | 9.8      | 31.0   | 148               | 89   | 118.5    | 39.2   |
| V22   | 11.6             | 11.3              | 11.45    | 2.5    | 188               | 87   | 137.5    | 53.7   |
| V23   | 11.9             | 9.3               | 10.6     | 21.8   | 145               | 128  | 136.5    | 11.7   |
| V24   | 12.5             | 10.0              | 11.25    | 20     | 129               | 101  | 115      | 21.7   |
| V25   | 12.4             | 11.6              | 12       | 6.4    | 130               | 60   | 95       | 53.8   |
| V26   | 10.5             | 9.5               | 10       | 9.5    | 141               | 130  | 135.5    | 7.8    |
| V27   | 12.9             | 12.2              | 12.55    | 5.4    | 119               | 101  | 110      | 15.1   |
| V28   | 11.6             | 11.0              | 11.3     | 5.1    | 135               | 122  | 128.5    | 9.6    |
| V29   | 14.2             | 13.4              | 13.8     | 5.6    | 100               | 56   | 78       | 44.0   |
| V30   | 13.8             | 11.1              | 12.45    | 19.5   | 147               | 64   | 105.5    | 56.4   |
| V31   | 10.6             | 10.2              | 10.4     | 3.7    | 108               | 38   | 73       | 64.8   |
| V32   | 8.1              | 7.3               | 7.7      | 9.8    | 120               | 64   | 92       | 46.6   |
| V33   | 12.2             | 9.1               | 10.65    | 25.4   | 127               | 120  | 123.5    | 5.5    |
| V34   | 9.5 9.0 9.25     |                   | 5.2      | 133    | 126 129.5 5.2     |      |          |        |
| V     | CD               |                   |          |        | V                 | (    | CD (0.05 | )      |
|       | (0.05)           |                   |          |        |                   |      | 0.10**   |        |
| А     | 0.06**           |                   |          |        | Α                 |      | 0.10**   |        |
|       | 0.06**           |                   |          |        |                   |      | 0.56**   |        |
| VxA   | 0.39**           |                   |          | VxA    |                   |      |          |        |

and lowest reduction in V20 (5.2%), V17 (5.5) and V22 (6.6) followed by V6 (10%) table 2.

# Speed of germination:

The differences in respect of speed of germination due to genotypes and ageing and their interaction were highly significant. Among the genotypes, V5 recorded no reduction percentage (0%) whereas V10 (1.2%), V15 (1.7%), V4 (4.1%), V2 (4.8%), V24 (4.8%) and V33 (5.1%) registered lowest reduction percentage over control, while V3 (100%) followed by V19 (92.6%) recorded highest

# percentage of reduction table 2. Total seedling length:

The differences in total seedling length varied significantly between genotypes and ageing and their interaction. V9 (1.9%) recorded lowest reduction in total seedling length (which maintained 10.0 cm) followed by V22, V2, V13 while all the seeds are dead in V3 and drastic reduction of 56.8% and 56% noticed in V4 (6.6 cm) and V19 (6.5 cm), respectively table 3.

## Seedling fresh weight:

The differences in seedling fresh weight varied significantly between genotypes and ageing and their interaction. V 16 recorded lowest reduction in fresh weight (which maintained 872mg) followed by V20, V23, V29, V21 which all the seeds are dead in V 3 and drastic reduction noticed in V 31 (93), V 4 (88), V8 (147) table 4.

## Seedling dry matter production:

The differences in respect of seedling dry matter production due to genotypes, ageing and their interaction were highly significant. Among the genotypes V34 has recorded least reduction percentage (5.2%) followed by V33 (5.5%), V 14 (5.9%) over control, While V3 (100%) followed by V4 (89.2), V19 (79.7), recorded highest percentage of reduction table 4.

# Vigour index:

Vigour index showed significant differences due to genotypes, ageing and their interaction. Significant decline in seed vigour of all the genotypes upon ageing was recorded. Seeds of V3 completely lost germination after five days of accelerated ageing which represent a very poor storer. V15 (1007) recorded highest value of seed vigour after ageing, followed by V2 (1003), V5 (990) respectively. The lowest seed vigour after accelerated ageing was recorded in V19 (65) followed by V8 (109), and V18 (252) respectively table 5.

# Discussion

Seeds of 34 genotypes subjected accelerated ageing  $(43\pm2^{\circ}C \text{ temperature and } 95\% \text{ RH})$  for five days to screen the genotypes for the seed storability shown significant variation in ability to germinate and produce

 Table 4: Effect of accelerated ageing on fresh weight (mg/g) in rice varieties/genotypes.

| Geno  | Fre                      | Percentage   |              |      |  |  |  |
|-------|--------------------------|--------------|--------------|------|--|--|--|
| types | Initial(A <sub>0</sub> ) | Aged $(A_1)$ | Reduction    |      |  |  |  |
| Vl    | 594                      | 481          | 537.5        | 19.0 |  |  |  |
| V2    | 381                      | 239          | 310          | 37.2 |  |  |  |
| V3    | 585                      | 0            | 292.5        | 100  |  |  |  |
| V4    | 349                      | 88           | 218.5        | 74.7 |  |  |  |
| V5    | 778                      | 387          | 582.5        | 50.2 |  |  |  |
| V6    | 779                      | 403          | 589.5        | 48.2 |  |  |  |
| V7    | 749                      | 649          | 699          | 13.3 |  |  |  |
| V8    | 670                      | 147          | 408.5        | 78.0 |  |  |  |
| V9    | 859                      | 859          | 859          | 0    |  |  |  |
| V10   | 249                      | 231          | 240          | 7.2  |  |  |  |
| V11   | 629                      | 610          | 619.5        | 3.0  |  |  |  |
| V12   | 492                      | 448          | 470          | 2.8  |  |  |  |
| V13   | 504                      | 351          | 427.5        | 30.2 |  |  |  |
| V14   | 520                      | 501          | 510.5        | 3.6  |  |  |  |
| V15   | 605                      | 581          | 593          | 3.9  |  |  |  |
| V16   | 878                      | 872          | 875          | 0.6  |  |  |  |
| V17   | 461                      | 450          | 455.5        | 2.3  |  |  |  |
| V18   | 670                      | 581          | 625.5        | 5.6  |  |  |  |
| V19   | 789                      | 786          | 789          | 0    |  |  |  |
| V20   | 527                      | 450          | 488.5        | 2.0  |  |  |  |
| V21   | 605                      | 590          | 597.5        | 2.4  |  |  |  |
| V22   | 834                      | 481          | 657.5        | 42.3 |  |  |  |
| V23   | 827                      | 810          | 818.5        | 2.0  |  |  |  |
| V24   | 562                      | 542          | 552          | 3.5  |  |  |  |
| V25   | 573                      | 354          | 463.5        | 38.2 |  |  |  |
| V26   | 69                       | 263          | 161          | 59.4 |  |  |  |
| V27   | 951                      | 361          | 361 656 61.4 |      |  |  |  |
| V28   | 582                      | 562          | 572          | 3.4  |  |  |  |
| V29   | 782                      | 764          | 773          | 2.3  |  |  |  |
| V30   | 585                      | 564          | 574.5        | 3.5  |  |  |  |
| V31   | 471                      | 93           | 282          | 77.6 |  |  |  |
| V32   | 364                      | 238          | 301          | 34.6 |  |  |  |
| V33   | 588                      | 561          | 574.5        | 4.5  |  |  |  |
| V34   | 594                      | 481          | 537.5        | 21.2 |  |  |  |
| V     |                          | CD           |              |      |  |  |  |
|       |                          | (0.05)       |              |      |  |  |  |
| Α     |                          | 1.47**       |              |      |  |  |  |
|       |                          | 1.47**       |              |      |  |  |  |
| VxA   | 8.61**                   |              |              |      |  |  |  |

vigorous seedlings. The results showed significant decline in seed germination and vigour parameters upon accelerated ageing. The seed quality parameters showed significant differences due to genotypes and genotypes and ageing and their interaction. Seeds of V3 completely lost germination after 5 days of accelerated ageing while V19 and V8 recorded 89 and 83 percent reduction, respectively. Whereas, no reduction was observed in V4, V5, V10, V15 and V24 and lowest reduction in V20,

 Table 5: Effect of accelerated ageing on seed vigour in rice varieties/genotypes.

| Geno  | Fre                      | Percentage                  |      |           |  |  |
|-------|--------------------------|-----------------------------|------|-----------|--|--|
| types | Initial(A <sub>0</sub> ) | Aged (A <sub>1</sub> ) Mean |      | Reduction |  |  |
| Vl    | 1192                     | 458                         | 825  | 52        |  |  |
| V2    | 1159                     | 1003                        | 1081 | 13.43     |  |  |
| V3    | 918                      | 0                           | 459  | 100       |  |  |
| V4    | 1377                     | 594                         | 985  | 66.86     |  |  |
| V5    | 1370                     | 990                         | 1180 | 27.73     |  |  |
| V6    | 1330                     | 792                         | 1061 | 40.45     |  |  |
| V7    | 1071                     | 648                         | 859  | 39.49     |  |  |
| V8    | 1053                     | 109                         | 581  | 89.64     |  |  |
| V9    | 918                      | 750                         | 834  | 23.46     |  |  |
| V10   | 1045                     | 722                         | 883  | 30.90     |  |  |
| V11   | 1273                     | 892                         | 1082 | 29.92     |  |  |
| V12   | 1380                     | 598                         | 989  | 56.6      |  |  |
| V13   | 1116                     | 342                         | 729  | 69.35     |  |  |
| V14   | 1035                     | 721                         | 878  | 40.33     |  |  |
| V15   | 1054                     | 1007                        | 1030 | 4.49      |  |  |
| V16   | 1134                     | 654                         | 894  | 42.32     |  |  |
| V17   | 1107                     | 850                         | 978  | 23.21     |  |  |
| V18   | 760                      | 252                         | 506  | 66.84     |  |  |
| V19   | 1332                     | 65                          | 698  | 95.12     |  |  |
| V20   | 1064                     | 819                         | 941  | 23.02     |  |  |
| V21   | 1044                     | 600                         | 822  | 42.52     |  |  |
| V22   | 870                      | 791                         | 830  | 9.19      |  |  |
| V23   | 1130                     | 651                         | 890  | 42.38     |  |  |
| V24   | 1125                     | 900                         | 1012 | 20        |  |  |
| V25   | 1116                     | 812                         | 964  | 27.24     |  |  |
| V26   | 945                      | 427                         | 686  | 53.83     |  |  |
| V27   | 1125                     | 610                         | 917  | 45.7      |  |  |
| V28   | 1102                     | 715                         | 908  | 35.1      |  |  |
| V29   | 1136                     | 871                         | 1003 | 23.32     |  |  |
| V30   | 1131                     | 832                         | 1071 | 26.43     |  |  |
| V31   | 1060                     | 816                         | 938  | 23.01     |  |  |
| V32   | 769                      | 584                         | 676  | 24.05     |  |  |
| V33   | 1159                     | 728                         | 943  | 37.18     |  |  |
| V34   | 902                      | 540                         | 721  | 40.1      |  |  |
| V     | CD (0.05)                |                             |      |           |  |  |
| Α     | 4.44**                   |                             |      |           |  |  |
| VxA   | 4.44**                   |                             |      |           |  |  |
|       | 19.22**                  |                             |      |           |  |  |

V17, and V22 followed by V6. The line V5 recorded no reduction percentage whereas V10, V15, V4, V2, V24 and V33 registered lowest reduction percentage over control in speed of germination. Similar decreases in the germination percentage after accelerated ageing in rice has also been reported by several workers (Kapoor et al. 2011). Reduction in germination is due to degradation of mitochondrial membrane, leading to reduction in energy supply necessary for germination (Gidrol et al., 1998). V9 recorded lowest reduction in total seedling length followed by V22, V2, V13. V16 recorded lowest reduction in fresh weight by V20, V23, V29, V21. The genotype V34 recorded least reduction percentage followed by V33, V14 over control in dry matter production. Seeds of V3 completely lost germination after five days of accelerated ageing which represent a very poor storer. V15 recorded highest value of seed vigour after ageing, followed by V2, V22 and V5. In general, rice genotypes V15, V22, V5 and V2 showed greater storage potential/storability while V3, V8 and V19 registered lower storage potential/ storability in terms of seed germination and seedling vigour. The decreased seed vigour is because of reduced capacity to germinate and produce vigorous seedlings which might be due to seed deterioration resulting from accelerated ageing of seed.

## Conclusion

Seeds of 34 genotypes subjected accelerated ageing for five days to screen the genotypes for the seed storability shown significant variation in ability to germinate and produce vigorous seedlings. The results showed significant decline in seed germination and vigour parameters upon accelerated ageing. The seed quality parameters showed significant differences due to genotypes and ageing and their interaction. Seeds of V3 completely lost germination after 5 days of accelerated ageing while V19 and V8 recorded 89 and 83 percent reduction, respectively whereas, no reduction was observed in V4, V5, V10, V15 and V24 and lowest reduction in V20, V17 and V22 followed by V6. V5 recorded no reduction percentage whereas V10, V15, V4, V2, V24 and V33 registered lowest reduction over control in speed of germination. V9 recorded lowest reduction in total seedling length followed by V222, V2 and V13. V16 recorded lowest reduction in fresh weight followed by V20, V23, V29 and V21. The genotype V34 recorded least reduction percentage followed by V33, V14 over control in dry matter production. Seeds of V3 completely lost germination after five days of accelerated ageing which represent a very poor storer. V15 recorded highest value of seed vigour after ageing, followed by

V2, V22 and V5. In general, rice genotypes V15, V22, V5 and V2 showed greater storage potential/storability while V3, V8 and V19 registered lower storage potential/ storability in terms of germination and seedling vigour.

# References

- Abdul-Baki, A.A. and J.D. Anderson (1973). Vigour determination by multiple criteria. *Crop Sci.*, **13:** 630-637.
- ANU. (2006). Technological transformation of productivity, profitability and sustainability: Rice. In the first ten K.R. Narayanan orations: Essays by eminent persons on the rapidly transforming Indian economy. Australia South Asia research centre the Australian national university.
- Delouche, J.C. and C.C. Baskin (1973). Accelerated ageing techniques for predicting the relative storability of seeds lots. *Seed Sci. and Technology*, **12**: 427-452.
- Gidrol, X., A. Noubhani, B. Mocquot, A. Fournier and A. Pradet (1998). Effect of accelerated aging on protein synthesis in two legume seeds. *Plant Physiology and Biochemistry*, 26(3): 281-288.
- Gopalan, C., B.V. Rama Sastri and S. Balasubramanian (2007). Nutritive value of Indian foods. India: National Institute of Nutrition (NIN), ICMR.
- Kapoor, N., A. Arya, M.A. Siddiqui, H. Kumar and A. Amir (2011). Physiological and biochemical changes during seed deterioration in aged seeds of rice (*Oryza sativa* L.). *American Journal of Plant Physiology*, 6(1): pp.28-35.
- Ma, H.L., J.G. Zhu, G Liu, Z.B. Xie, Y.L. Wang, L.X. Yang and Q. Zeng (2007). Availability of soil nitrogen and phosphorus in a typical rice-wheat rotation system under elevated atmospheric [CO<sub>3</sub>]. *Field crops research*, **100(1)**: 44-51.
- Maguire, J.D. (1962). Speed of germination-Aid in selection and evaluation for seedling emergence and vigor 1. *Crop science*, **2(2)**: 176-177.
- Mc Donald, M.B. (1999). Seed deterioration: Physiology, repair and assessment. *Seed Sci. and Technol.*, **27**: 177-237.15.
- Mitin, A. (2009). Documentation of selected adaptation strategies to climate change in rice cultivation. East Asia Rice Working Group, p. 8.
- Modaressi, R. and P. Van damme (2003). Application of controlled deterioration test to evaluate wheat seed vigour. *Seed Science Technology*, **31**: 771-775.
- Ruan, S. and Q. Xue (2002). Effects of chitosan coating on seed germination and salt-tolerance of seedling in hybrid rice (*Oryza sativa* L.). *Zuo wu xue bao*, **28(6):** 803-808.
- Siddique, S.B., D.V. Seshu and W.D. Pardee (1988). Rice cultivar variability in tolerance for accelerated ageing of seed. *IRRI Research Paper Series*, **131:** 1-7.
- Yokoi, S., R.A. Bressan and P.M. Hasegawa (2002). Salt stress tolerance of plants. *JIRCAS working report*, **23**(1): 25-33.